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Abstract

All failure detection methods are based, either explicitly or

implicitly, on the use of redundancy, i.e. on (possibly dynamic)

relations among the measured variables. The robustness of the failure

detection process consequently depends to a great degree on the

reliability of the redundancy relations, which in turn is affected by

the inevitable presence of model uncertainties. In this paper we

address the problem of determining redundancy relations that are

optimally robust, in a sense that includes several major issues .of

importance in practical failure detection, and that provides a

significant amount of intuition concerning the geometry of robust

failure detection. We also give a procedure, involving the construction

of a single matrix and its singular value decomposition, for the

determination of a complete sequence of redundancy relations, ordered in

terms of their level of robustness. This procedure also provides the

basis for comparing levels of robustness in redundancy provided by

different sets of sensors.
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1. Introduction

A wide variety of techniques has been proposed in recent years for

the detection, isolation, and accommodation of failures in dynamic

systems (see, for example, the surveys in [1,4]). In one way or another,

all of these methods involve the generation of signals that are

-accentuated by the presence of particular failures if these failures

:have actually occurred. The procedures for generating these signals in

~turn depend on models relating the measured variables. Consequently, if

any errors in these models have effects on the observables that are at

all like the effects of any of the failure modes, then these model

errors may also accentuate the signals. This leads us directly to the

issue of robust failure detection, that is, the design of a system that

is maximally sensitive to the effects of failures and minimally

sensitive to model errors.

The work described here focuses on directly designing a failure

detection system that is insensitive to model errors (rather than

designing a system that attempts to compensate the detection algorithm

by estimating uncertainties on-line, see [6, 7, 12]). The initial

impetus for our approach came from the work reported in [5, 13], in the

context of aircraft failure detection. The noteworthy feature of that

project was that the dynamics of the aircraft were decomposed in order

to analyze the relative reliability of each individual source of

potentially useful failure detection information. In this way, a design

was developed that utilized only the most reliable information.

In [2] we presented the results of our initial attempt to extract

the essence of the method used in [9, 13] in order to develop a general

approach to robust failure detection. As discussed in those references

and in others (such as [3, 7, 8]), all failure detection systems are

based on exploiting analytical redundancy relations or (generalized)

parity checks. These are simply functions of the temporal histories of

the measured quantities that have the property of being small (ideally

zero) when the system is operating normally. Essentially all of the

recently developed general approaches to failure detection make

implicit, rather than explicit use of all of these relations. That is,

these general methods use an overall dynamic model as the basis for

designing failure detection algorithms. While such a model certainly

captures all of the relationships among the measured variables, it does

not in any way discriminate among these individual relationships. For

this reason, a top-down application of any of these methods mixes

together information of varying levels of reliability. What would

clearly be preferable would be a general method for explicitly
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identifying and utilizing only the most reliable of the redundancy

relations.

One criterion for measuring the reliability of a particular

redundancy relation was presented in [2] and was used to pose an

optimization problem to determine the most reliable relation. This

criterion has the feature that it specifies robustness with respect to a

particular operating point, thereby allowing the possibility of

adaptively choosing the best relations. However, a drawback of this

approach is that it leads to an extremely complex optimization problem.

Moreover, if one is interested in obtaining a list of redundancy

relations that is ordered from most to least reliable, one must

essentially solve a separate optimization problem for each relation in

the list.

In this paper we look at an alternative measure of reliability for

a redundancy relation. Not only does this alternative have a helpful

geometric interpretation, but it also leads to a far simpler

optimization procedure, involving a single singular value decomposition.

In addition, it allows us in a natural and computationally feasible way

to consider issues such as scaling, relative merits of alternative

sensor sets, and explicit tradeoffs between detectability and

robustness.

In Section 2 we review the notion of analytical redundancy for

perfectly known models, and then provide a geometric interpretation that

forms the starting point for our investigation of robust failure

detection. Section 3 addresses the problem of robustness using our

geometric ideas, and solves a version of the optimally robust redundancy

problem. In Section 4 we discuss extensions to include three important

issues not included in Section 3: noise, known inputs, and the

detection/robustness tradeoff. We conclude the paper in Section 5 with

a discussion of several other topics, including the relationship of our

results to those in [2] and the use of this formalism to measure and

compare the levels of robust redundancy associated with different system

configurations.
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2. Redundancy Relations

This paper focuses attention on linear, time-invariant, discrete-

time systems. In this section we consider the uncertainty-free model

x(k+l) = Ax(k) + Bu(k) ', (1)

y(k) = Cx(k) + Du(k) , (2)

where x is an n-dimensional state vector, u is an m-dimensional vector

of known inputs, y is an r-dimensional vector of measured outputs, and

A, B, C and D are known matrices of appropriate dimensions. A

redundancy relation for this model is some linear combination of present

and lagged values of u and y that is identically zero if no changes

(i.e. failures) occur in (1), (2).

As discussed in [2], redundancy relations can be specified

mathematically in the following way. The subspace of (s+l)r-

dimensional vectors given by

P= {v IvT CA = 0 } (3)

LCASJ

is called the parity space of order s (to be distinguished from the s-

step unobservable subspace, which corresponds to the right null space of

the matrix in (3) rather than its left null space). We shall denote

(s+l)r by N. Every vector v in (3) can be associated at any time k with

a parity check, r(k):

y(k-s) u(k-s)

r(k) = vT[ y(k-s+l) H u(k-s+l) (4)

y(k) u(k)

D

CB D 0

H = CAB CB D (5)

CA2 B CAB CB D

CAs B . CAB CB D
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(The development in Sections 2 to 4 deals with a single, fixed value of

s. Therefore, to avoid notational clutter, we shall not index subspaces

such as P in (3) or matrices such as H in (4) with the subscript s.

Consideration of different values of s is contained in Section 5.) By

(1), (2), the quantity in brackets [.] in (4) equals

CA x(k-s) . (6)

LCA S J

Hence, by (3), we see that the simple redundancy relation or parity

check

r(k) = 0 (7)

is satisfied.

It is evident from (4) and (7) that a redundancy relation is simply

an input-output model for (or constraint on) part of the dynamics of the

system (1), (2). This interpretation of a redundancy relation allows us

to make contact with the numerous existing failure detection methods.

These methods are typically based on a noisy version of the model (1),

(2) that represents normal system behavior, together with a set of

deviations from this model that represent the several failure modes.

However, rather than applying such methods to a single, all-encompassing

model as in (1), (2), one could alternatively apply the same techniques

to individual models as in (4), (7), or to a combination of several of

these, which serves to isolate individual (or specific groups of) parity

checks. (See Section 5 for some further comments on this point.) This is

precisely what was done in [5, 13], for example. The advantage of such

an approach is that it allows one to separate the information provided

by redundancy relations of differing levels of reliability, something

that is not easily done when one starts with the overall model (1), (2),

which combines all redundancy relations.

In the next two sections we address the main problem of this paper,

which is the determination of optimally robust redundancy relations.

The key to this approach is obtained by re-examining (3)-(7), in. order

to suggest a geometrical interpretation of parity relations. In

particular, consider the model (1), (2) and let Z denote the range of

the matrix in (3). Then the parity space P is the orthogonal complement

of Z, and a complete set of parity checks, of order s and of the form

(4), (7), is given by the orthogonal projection of the vector of input-
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adiusted observations

y(k-s) u(k-s)

y(k-s+l) - R u(k-s+l) (8)

Ly(k) Lu(k)

onto P.

To illustrate this, consider an example in which the first two

components of y measure scaled versions of the same variable, i.e.

Y2(k) = ayl(k) . (9)

Then, as illustrated in Figure 1, the subspace Z in yl - Y2 space is

simply the line specified by (9). Furthermore, in this case the obvious

parity relation is

r(k) = Y2(k) - ayl(k) , (10)

which is nothing more than the orthogonal projection of the observed

pair of values yl(k) and y2(k) onto the line P perpendicular to Z

(Figure 1). For interpretations of the space P in purely matrix terms

and in terms of polynomial matrices, we refer the reader to [9] and [3],

respectively. It is the geometric interpretation, however, that we

shall utilize here.
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P-~x x Y2x

Observed value
, ,,/ ....! of (Yl, Y2)

Y/

Value of the parity relation
r = Y2 - ay1

Figure 1: An Example of the Geometric Interpretation of Parity
Relations.



3. A Geometric Approach to Robust Redundancy

To begin, let us focus on a model that is not driven by either

unknown noise or known signals:

x(k+l) = Aqx(k) (11)

y(k) = Cq x(k) (12)

where q indexes the models associated with different possible values of

the unknown parameters. Throughout this paper (except for a brief

discussion in Section 5), we consider only the case where q is taken

from a finite set of possibilities, say q=l, 2,..,Q. In practice, this

might involve choosing representative points out of the actual,

continuous range of parameter values, reflecting any desired weighting

on the likelihood or importance of particular sets of parameter values.

Define the (s-step) observation space Zq by

CqqZq = range CqAq (13)

This is the subspace in which the window of observations for the system

(11), (12) lives, as x(k-s) varies over all possible values. For a given

q, the parity space is the orthogonal complement, Pq, of Zq. However,

the orthogonal complement of one observation space will not be the

orthogonal complement of another distinct observation space. It is

therefore in general impossible to find parity checks that are perfect

for all possible values of q. That is, in general we cannot find a

subspace P that is orthogonal to Zq for all q.

What would seem to make sense in this case is to choose a subspace

P that is "as orthogonal as possible" to all possible Zq. Returning to

our simple example, suppose that Y2 = ayl but that 'a' is only known to

lie in some interval. In this case we obtain the picture shown in Figure

2. The shaded regions here represents the range of (Y1, Y2) values

consistent with the uncertainty in 'a'. Intuitively, what would seem to

be a good choice for P (assuming that 'a' is equally likely to lie

anywhere in the interval (24)) is the line that bisects the obtuse angle

between the shaded sectors in Figure 2. It is precisely this geometric

picture that is generalized and built upon in this paper.
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For the general case, our procedure will be to first compute an

average observation space ZO that is as close as possible, in a sense to

be made precise, to all of the Zq. We shall then choose P to be the

orthogonal complement of ZO. (This idea is also illustrated in Figure 2,

where the average observation space ZO is depicted as the line that

bisects the shaded region, and the line P then represents its orthogonal

complement.) Note that the Zq are subspaces of possibly differing

dimensions, embedded in a space of dimension N = (s+l)r, corresponding

to histories of the last s+l values of the r-dimensional output.

Consequently, if we would like to determine the p best parity checks (so

that dim P = p), we need to find a subspace ZO of dimension N-p.

A Preliminary Scaling: Before stating the criterion that defines ZO, it

is necessary to take account of a fact that has been glossed over so

far. It is not sufficient to simply examine the subspaces in which

signals lie; one has also to consider the characteristic magnitudes and

directions of the excursions of signals in the subspaces to which they

are confined. It will typically be the case that some components (or

combinations of components) of x(k-s) are larger than others, because

they may be measured in different units and excited differently. Hence

certain excursions in observation space are more likely than others. To

take account of this, assume for now that we are able to find a

nonsingular scaling matrix Mq such that, with the change of basis

x = MqW , (14)

one obtains a variable w that is governed by a similarity-transformed

version of (11), (12) and has "equally likely" excursions of "unit

length" in each direction under the q-th model. This sort of

normalization is discussed more at the end of this section and in

Section 4.1, where observation and process noise are incorporated into

the model. (See also [11], in which scaling is also considered in the

context of the design of a failure detection system.) We can now use the

columns of the matrix

C A (15)q q

as a spanning set for Zq. We shall denote the matrix in (15) by the non-

boldface Zq. We shall, in the remainder of this paper, consistently use
a boldface capital letter to denote the subspace spanned by the columns
of a matrix that is denoted by the corresponding non-boldface capital.
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Z(a)
a 1 a a 2

Figure 2: Illustratinq the choice of G in the presence

of uncertain parameters.\ .... .\. ... .... .... ...
\ ........



The criterion for the best choice of ZO may now be defined in the

following manner. With Zl, ... , ZQ denoting the scaled matrices in (15)

whose columns span the possible subspaces in which the observation

histories may lie under normal conditions, define the NxQn matrix

Z = [Z1: ... :ZQ] (16)

The optimum choice for ZO is then taken to be the span of the columns of

the matrix ZO that minimizes

II z - Z IIF (17)

subject to the constraint that rank ZO = N-p (which ensures that the

orthogonal complement P of ZO has dimension p). Here J11 JIF denotes the
Frobenius norm, which is defined as the sum of the squares of the

entries of the associated matrix. The matrix ZO is thus chosen so that

the sum of the squared distances between the columns of Z and of ZO is

minimized, subject to the constraint that ZO contains only N-p linearly

independent co lumns.

The optimization problem we have just posed is easy to solve. In

particular let the singular value decomposition (see [14, 151) of Z be

given by

z = U v , (18)

where

02 0
0= . i O 8 , (19)

and U and V are orthogonal matrices. Here al < a2 < ... < ON are the

singular values of Z, ordered by magnitude. Note that we have actually

assumed N < Qn . If this is not the case, we can make it so without

changing the optimum choice of ZO by padding Z with additional columns

of zeros. As shown in [17] (see also [18]), the matrix ZO minimizing

(17) is given by
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0

0 0

z o - U1 Cp+l v . (20)

0N 1

Moreover, since the columns of U are orthonormal, we immediately see

that the orthogonal complement of the range Z0 of Z0 is given by the

first p left singular vectors of Z0, i.e. the first p columns of U.

Consequently, an orthonormal basis for the parity space P is given by

P = [ul,...,up] (21)

and ul,...,up define optimum redundancy relations or parity checks.+

There are additional reasons for choosing this method for

determining Z0 and P, apart from the fact that the computation just

described is quite straightforward. Firstly, minimization of the

criterion in (17) does produce a space that is as close as possible in a

natural sense to a specified set of directions, namely the columns of

(Zq, q = 1,...,Q} . Thanks to the scaling (14), these columns represent

a complete set of "equally likely" directions in the observation space

Zq (corresponding to the "equally likely" values of the scaled state w =

[1,O ,...,O]T, [0,1 ,...,O]T, etc.). A second (and more precisely stated)

reason follows from an alternative interpretation of our choice of P

that provides some very useful insight.

Specifically, recall that what we wish to do is to find a subspace

P that is as orthogonal as possible to all the subspaces Zq. Translating

this to statements about bases for these spaces, we would like to choose

an Nxp matrix P, normalized by the condition that it have orthonormal

columns (i.e. PTP = Ip , so that P is the orthogonal projection onto the

subspace P) , to make each of the matrices pTZq as close to zero as

possible. Now, as shown in the Appendix, the choice of P given in (21)

also minimizes

Q
J = I1 pTZT 112 (22)

q-1q=l

yielding the minimum value

+Note that if ap+i = 0, then (a) Z0 actually has rank less than N-p and

(b) there is a perfectly robust parity space of dimension at least p+l.
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p
J = i* p (23)

i=l

In fact, as illustrated in the Appendix, the same choice of P can also

b ehown to minimize other physically meaningful criteria.

Some important points about the result (22), (23) should be noted.

To begin with, one can now see a straightforward way in which to include

unequal weightings on each of the terms in (22). Specifically, if aq

are positive numbers, then minimizing

Q
J1-r, a TPz9 11 2 (24)J1 = X aq || pTzq {(F

q=l

is accomplished using the same procedure described previously, but with

Zq replaced by f Zq . Carrying this one step further, if we normalize

the aq so that they sum to one, we can think of them as representing the

prior probabilities for each of the possible system models. Thus J1 in

(24) can be interpreted as the expected value of I PTZ 112 , where the

expectation is taken over the model uncertainty. Furthermore, if we

interpret the scaling (14) as producing a state w with unit covariance

(i.e. E[wwT] = I), then {{ PTZ {l2 can be interpreted as E (It r(k) 112) ,

where r(k) now (unlike in (4)) is being used to denote the vector whose

entries are the complete set of parity checks determined by the

projection P,

y(k-s)
r(k) = pT y(k-s+l) = PTzqw(k-s) (25)

y(k)

and Eq represents the expectation over w(k-s), assuming that the data is

generated by the q-th model. Combining this with the probabilistic

interpretation of the aq, we see that

J1 = E(It r(k) 1,2) , (26)

where E denotes expectation over w(k-s) and the model uncertainty. It is

on this interpretation that we build in the next section.

Finally, note that the optimum value (23) provides us with an

10



interpretation of the singular values as measures of robustness and

provides a sequence of parity relations ordered from most to least

robust: u1 is the most reliable parity relation, with 2 as its

robustness measure; u2 is the next best relation, with a2 as its

robustness measure; etc. Consequently, from a single singular value

decomposition, we can obtain a complete solution to the robust

redundancy relation problem for a fixed value of s, i.e. for a fixed-

length time history of output values.

11



4. Three Extensions

In this section we develop three extensions of the result of the

preceding section, through modifications that entail no fundamental

increase in complexity. The treatment of noise is first addressed, in

Section 4.1, while the inclusion of known inputs is discussed in Section

4.2. Finally, the issue of designing parity checks for robust detection

of a particular failure mode is examined in Section 4.3.

4.1 Observation and Process Noise

In addition to choosing parity relations that are maximally

insensitive to model uncertainties, it is also important to choose

relations that suppress noise. Consider the model

x(k+l) = A x(k) + B u(k), (27)
q q

y(k) = C qx(k) + Dq u(k), (28)

where u(.) is a zero mean, unit covariance, white noise process. We

assume that x and y have attained stationarity, and that the steady-

state covariance of x is given by

Sq = MqMT (29)

The time window of observations for (27), (28) is now given by

y(k-s) Cq u(k-s)

y(k-s+l) Mwk + uk-s+l)

y(k) CqAqS u(k)

where w(k-s) has zero mean and unit covariance -- cf. (14), (15) and the

discussion at the end of Section 3 -- and Hq has the same structure as

in (8), except that all matrices are replaced by their subscripted

versions, since it is the q-th model that is under consideration. We

shall write (30) more compactly as

Y(k) = Z w(k-s) + H qU(k) , (31)

with the definitions of the symbols being obvious from (30). In

particular, note that the U(k) has unit covariance and is independent of

w(k-s).

12



A natural extension of the minimization criterion (24), (26) is

then provided by

Q
J = i aqEq( II r(k) 11 2) (32)

q=l

where

r(k) = PTy(k) (33)

and where Eq denotes the expectation over w(k-s) and U(k), assuming that

the data is generated by the q-th model. As before, J is to be minimized

by choice of P that satisfies pTP = I , and the parity space P will

then be taken to be the range of P.

For simplicity, let us first assume that aq = 1 for all q. It is

then quite directly seen that

Q
J = tr[pT(ZqZqT + HqHqT)p]

qiq

Q
= IIPT[Z :Hq]II . (34)

q=l

From this it is evident, given our previous results, that the optimum

choice of P is computed by performing a singular value decomposition on

the matrix

T [Z1: H 1: ... :ZQ: ] (35)

If the aq are not all identical, then we simply modify T by scaling Zq

and Hq by J/a.

It is evident from the above that the effect of noise is simply to

define additional directions to which the columns of P should be as

orthogonal as possible . That is, P is to be chosen so that the parity

check r(k) has minimal response both to the likely sequences of values

of the ideal noise-free observations (as specified by the columns of Zq)

and to the directions in which the observation noise and process noise

have their maximum effects (as determined by the columns of Hq). The

solution of this problem yields, as before, and complete set of parity

13



checks, corresponding to the left singular vectors of T, ordered in

terms of their degrees of insensitivity to model errors and noise (as

measured by the corresponding singular values).

4.2 Known Inputs

The analysis of the preceding section can be modified somewhat to

allow us to consider the case in which some of the driving terms in (27)

are known inputs. To simplify the discussion in this section, we assume

that all of the components of u(k) are known inputs. The extension to

the case when there are both known inputs and noise is straightforward.

The key difference between the case in which u(k) is unmeasured and

the case in which it is measured is that in the latter case we can

adjust the measured outputs y(k) to account for the effect of the

measured inputs u(k) (see the discussion in Section 2). That is, we can

consider defining a vector of parity checks of the form

pY (k))
r(k) = pT L (36)

L.(k)J

where pTp = Ip. The question then is, how do we measure the robustness

of r(k). Clearly, since U(k) is known, we can consider defining a

robustness measure relative to any specified input sequence U(k). This

approach is closer to the spirit of the work of Chow and Willsky [2].

As discussed in Section 5, such an approach allows one to adjust the

parity matrix P on-line by (in effect) scheduling it with respect to

U(k), but the price that is paid for this is significantly greater on-

line and off-line computational complexity.

What we shall do instead is to follow the same philosophy we have

used upto this point. That is, we shall attempt to find a single matrix

P that minimizes the norm of r(k) on the average, as w(k-s) and U(k)

vary over their likely range of values. More precisely, we assume that

U(k) is zero mean, and

Eq [w(k T( UT(k)- N NT (37)

where Nq is any square root of the covariance matrix above. As an

example, if a feedback control of the form u(k) = Gw(k) is used, then

U(k) = Lqw(k-s) (38)

14



for a matrix Lq that is easily written in terms of G, Aq, Bq and Mq (but

we omit the explicit details here), so that

NT= 4 LT] (39)

If process noise were also included, there would not be a deterministic

coupling of U(k) and w(k-s), and a straightforward modification of (38)

would provide the appropriate form for Nq.

Consider now the criterion (32), with all of the aq taken to be 1

for the sake of simplicity. A direct calculation yields

Q
J = yltPTRq | , (40)

q=l

where

Rq= N (41)

so that the optimum choice of P is obtained from the singular value

decomposition of [R1:R2: ... :R1].

4.3 Detection Versus Robustness

The methods described to this point involve measuring the quality

of redundancy relations in terms of how small the resulting parity

checks are under normal operating conditions. That is, good parity

checks are maximally insensitive to modeling errors and noise. However,

in some cases one might prefer to broaden the viewpoint. In particular,

there may be parity checks that are not optimally robust (in the sense

that we have discussed) but that are still of significant value because

they are extremely sensitive to particular failure modes. In this

subsection, we consider a criterion that takes such a possiblity into

account. We focus, for simplicity, on the noise-free case. The

extension to include noise or known inputs as in the previous subsection

is straightforward.

The specific problem to be considered is the choice of parity

checks for the robust detection of a particular failure mode. We assume

that the unfailed model of the system is



x(k+l) = Aqx(k) , (42)

y(k) = Cqx(k) (43)

while if the failure has occurred the model is

x(k+l) = Xq(k), (44)

y(k) = Cqx(k) . (45)

For example, if we return to the simple case Y2(k) = ayl(k), then

under unfailed conditions one might have

al < a < a2 (46)

while after a failure

al < a < a2 (47)

This is illustrated pictorially in Figure 3. In this case, one would

like to choose the line P onto which one projects in such a way that a

small projection is obtained if no failure has occurred and a large

value results if a failure occurs. That is, we would like P to be "as

orthogonal as possible" to Z and "as parallel as possible" to Z.

Returning to the general problem, we again assume that q takes on

one of Q possible values, and we let Zq and Zq denote the counterparts

of Zq in (15) for the unfailed and failed models, respectively. We now

have a tradeoff: we would like to make pTZq as small-as possible for all

q and to make pTZq as large as possible. A natural criterion, for

minimization over all P satisfying pTp = I , is provided by

J= T|1 pTZ 112 _ yPTZ 112) (48)

q=l

If we define the matrices

H = [Z1:Z2: .. :ZQ:Z 1:Z 2: :ZQ] (49)

and

S = block diagonal [IQn -I Qn , (50)
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Zy X, {Z(a),a, oaa}

Z Z =Z(a).a s asa2

Figure 3: Illustrating Robust Detectability. Here Z represents
the set of values of (Y1,Y 2) that can occur under normal operation,

while Z represents the corresponding set after the occurrence of a
failure.



then

J = tr [pTHSHTP] . (51)

It is straightforward (see [3]) to show that a minor modification

of the result in [17] leads to the following solution. We perform an

eigenvector-eigenvalue analysis on the matrix

HSHT = U AUT (52)

where U is orthogonal and

A = diagonal [A1,.',AN] , A1 < * < AN · (53)

Then the optimum choice for P is the first p columns of U:

P = [u: ... :up] . (54)

The corresponding minimum value of J in (48), (51) is

p

* Ai (55)
i=l

Two comments are in order about this solution. The first is that

no more than Qn of the Aq can be positive. In fact the parity check

based on uq is likely to have larger values under failed rather than

unfailed conditions if and only if Aq < 0 . Thus we immediately see

that the maximum number of useful parity relations for detecting this

particular failure mode equals the number of negative eigenvalues of

HSHT.

As a second comment, let us contrast the procedure we use here with

the singular value decomposition of Z used in Section 3, which

corresponds essentially to performing an eigenvector-eigenvalue analysis

of zzT. First, assume that precisely the first K of the Aq are

negative, and define

O1 = -l *- -XK
(56)

a+I1 = AK+1 ' O N' A

and
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_ = diagonal [oa,..,, a N] . (57)

From (52) we have that

HSH = UzSyUT . (58)

Assuming that _ is nonsingular (which implies K=Qn), define

v = I -lUTH . (59)

Then V is S-orthogonal,

VSVT = S , (60)

and H has what we call an S-singular value decomposition

H = V . (61)

Thus, instead of the singular value decomposition of Z that we used in

Section 3, the modified problem considered in this subsection calls for

the S-singular value decomposition of H.
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5. Discussion

This paper has developed methods for determining robust parity

relations for failure detection in dynamic systems. The methods build

on the geometric interpretation of parity checks as orthogonal

projections of windows of observations onto subspaces that are as

orthogonal as possible to the observation sequence, given the presence

of model uncertainties and noise. We also considered the modification

of this criterion to enable choice of parity checks for the detection of

a particular failure mode. In each of the cases considered, a single

singular value decomposition (or a variation of it, in the case of

Section 4.3) produced a complete sequence of orthogonal parity

relations, ordered in terms of a meaningful measure of robustness. In

this section we provide brief discussions of several issues concerned

with the interpretation and use of these results.

5.1 A Graphical Picture of Robust Redundancy

In all three of the formulations considered (in Sections 3, 4.1,

and 4.2), we considered the problem of finding the p best parity checks.

An obvious question, then, is what is a good value of p? While our

results do not give a precise answer to this question, they do provide a

basis for obtaining a picture of the level of robust redundancy in a

particular system configuration, as outlined next.

Recall that the solutions to our problems provide rank-ordered

lists of parity relations, with a figure of merit for each relation

given by a corresponding singular value (or eigenvalue for the case of

Section 4.3). For example, consider the criterion (22). As we have

seen, minimization of J over all choices of the parity check matrix P

subject to the constraint that pTp = I (i.e. that we specify exactly p

parity checks) results in the value J given in (23), namely the sum of

the p smallest singular values of the matrix Z in (18). The solid curve

in Figure 4 illustrates a plot of this minimum value J* as a function of

p. Note that this curve must be convex, since the increment in J* when

we increase the number of parity checks from p to p+l is a2+l, which is

at least as large as the squares of any of the p previous singular

values. Furthermore, in this illustration the knee in the solid curve

indicates a sharp increase in the singular values, which in turn points

to a value of p beyond which the level of robustness decreases markedly.

Plots as in Figure 4 can also be of value in comparing different

system configurations. In particular, in specifying a sensor complement
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P

Figure 4: Illustratina the plot of the optimum value of
the robustness criterion as a function of the
number of parity checks specified (p takes on only
integer values, but we have used continuous curves
to facilitate illustration).



for a particular system, one is certainly interested in finding a set of

sensors that provides a sufficient level of robust redundancy to allow

accurate failure detection to be performed. Returning to Figure 4, the

dashed line might correspond to the robust redundancy curve for an

alternate sensor set. This set has a higher level of robust redundancy

than the one corresponding to the solid line, since the dashed curve

lies below the solid one. Clearly this is not a sufficient reason to

state that the alternate sensor set is superior to the original one --

e.g. if the alternate set was obtained by adding several sensors to the

original set, one would have to check that there is enough additional

redundancy to permit the detection of the larger set of possible

failures associated with this expanded sensor set -- but it does provide

useful information for this design process.

Finally, we note that throughout the paper we have assumed a fixed

order s for the parity checks under consideration. In any application

one would, of course, want to consider several values of s. There are

clear advantages (in terms of response time, and complexity of

inplementation) in considering small values of s, but the dynamics of a

system may be such that there are important relationships of

particularly high order. What one can imagine doing is solving the

robust redundancy problem for s = 1,2,.... Each such problem would

result in a curve as in Figure 4, with the curve for each successive

value of s lying below the preceding one. While this would appear to

indicate that larger values of s always produce additional, useful

parity checks, this is not necessarily the case -- one must check to see

if these additional redundancy relations are truly useful or are simply

nonminimal realizations of lower-order parity checks. For example, if

Y 2(k) = ayl(k), then y2 (k) - ayl(k) is a valid parity check, but so is

Y2(k) + y2 (k-1) - ayl(k) - ayl(k-l). See [3] for a polynomial matrix

characterization of a complete set of minimal-order parity checks for

deterministic linear systems and for a numerical example illustrating

the issues raised in this section.

5.2 Alternate Robustness Criteria

In [2], Chow and Willsky consider a somewhat different formulation

of the robust parity check problem. The criterion in [2] has several

significant differences from the one we have used here, and in this

section we describe the relationship between these. In the process we

provide additional motivation for the present formulation. We also

indicate several other criteria that in a sense represent intermediate

steps between [2] and the present paper, and that provide some useful
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insights. A more thorough development of these can be found in [3].

The model considered in [21 is a modified version of (27), (28)

that includes known inputs and noise, and in which the-model

uncertainties are not constrained to a finite set of values. As

discussed in Section 4.2 and the Appendix, there are direct ways in

which one can incorporate known inputs and continuous parameter

variations into the present formulation. The critical difference

between [2] and our approach is the specific criterion chosen to define

robustness. In particular, the principal problem posed and solved in

[2] is the determination of the single best parity check r(k) (so p=l),

where "best" is defined as that with the minimum worst-case mean-squared

value over the specified range of parameter uncertainties, with the

system at a specified operating point -- i.e. the known input is assumed

to take on a specified constant value, and the state x(k-s) at the start

of the data window is assumed to be at the equilibrium state

corresponding to the constant control. While the consideration of

operation at a particular set point does allow one to consider adapting

parity checks to changing operating conditions, this flexibility is

achieved at the expense of requiring that one solve a complex nonlinear

optimization problem. Moreover, if one wishes to consider finding

several parity checks, one must either solve one nonlinear optimization

problem of greater complexity or a sequence of problems of equal

complexity for each additional parity check.

As discussed in [3], if one removes the operating point constraint

of [2] and assumes instead that the initial state is completely

unconstrained, one is led to a criterion in which a parity space P has

to be chosen to maximize either the minimum or average angle P makes

with the observation space Zq as q ranges over its full set of values.

Here the cosine of the angle between two subspaces is defined as the

maximum length of the projection of a unit vector from one space onto

the other. While for any two subspaces this angle can be calculated

using singular values [3], the maximization of the average or worst-case

value of this angle is still a very complex nonlinear optimization

problem. However, on reversing the steps of computing angles and

averaging over parameter uncertainties, we are led to first compute a

subspace that is the average of the Zq and then choose P to be

orthogonal to this average. This is very nearly the criterion we

introduced in Section 3.

Specifically, as shown in [3] and [16], in this case we again

choose the matrix Zo to minimize (17), but now with the columns of the

matrices Zq chosen to form orthonormal bases for the Zq. The only
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difference between this and the criterion we have used is the

introduction in our case of scaling -- i.e. instead of viewing the

initial state as completely unconstrained, we specify its covariance.

With this specification we loose the interpretation of maximizing an

angle between subspaces (since we replace orthonormal bases for the Zq

with the columns of the Zq matrices defined in (15)), but the use of

scaling is critical in order to obtain a practically meaningful

criterion.

5.3 The Interpretation and Use of Parity Checks

Once we have determined a parity check, the question arises as to

how this relation should be used. Chow and Willsky provide a detailed

discussion of this issue in [2], and we shall not repeat it here.

However, we shall make several brief comments in order to point to

interesting avenues for further work.

Recall that the type of criterion on which we have focused in this

paper is E[II r(k) 112], where the expectation is averaged over model

uncertainty, noise, inputs, and initial conditions. This criterion is

directly related to the performance of an open-loop [2] failure

detection system in which the values of r(k) calculated over an interval

are used to make failure detection decisions (e.g. by comparing the sum

of the squared norms of the r(k) over the interval to a threshold).

It is also possible to use a parity check to define a closed-loop

[2] failure detection algorithm. Specifically, as mentioned in Section

2, a parity check can be interpreted as defining a dynamic model. For

example, a parity check of the form

r(k) = Yl(k) - Yl(k-1) - Ty2(k-1) (62)

(which might represent the relationship between the change in measured

velocity, Yl, to the measured acceleration, Y2, scaled by the sampling

time) can be interpreted as defining a model of the form

Zl(k) = Zl(k-1) + TY2(k-1) + w(k) (63)

Yl(k) = zl(k) + vl(k) (64)

where zl(k) represents the ideal noise-free value of Yl, and the process

noise w(k) models both the expected deviations of r(k) from zero under

noise-free conditions (e.g. due to modeling error) and the presence of
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sensor noise in y2(k-1). The model (63), (64) could then be used with

any of the many existing sophisticated failure detection methods.

For example, one could consider basing failure detection decisions

on the innovations Y(k) from a Kalman filter based on (63), (64) .+ A

natural measure of robustness in this case would then be E[lI/(k) 112]

This in turn raises the question of determining parity relations (i.e.

finding P) to directly minimize E[I '(k)II 2]. While this is an

interesting and meaningful criterion, it is also true that this quantity

is an extremely complicated and nonlinear function of P. Thus the

methods of this paper would not directly apply to this problem, and it

remains to be determined (a) if an efficient method can be obtained for

solving this problem and (b) under what conditions, if any, significant

performance improvements can be obtained by direct optimization of

closed-loop innovations.

As a final comment, we note that the interpretation of parity

checks as reduced-order models raises the question of whether the

constructions developed here provide a useful, new method for model

reduction. The exploration of this question remains for the future, but

we note one interesting point. Specifically, what a parity relation

such as (62) specifies is a constraint among the time evolutions of the

components of y(k). If one wishes to interpret such a relation as a

dynamic model for the evolution of one of these components, as in (63),

(64), then the other components of the measurement vector act as inputs

to this model.

+ It is interesting to note that all but one of the parity relations

used in [5,13] were used in an open-loop fashion. The remaining parity

relation was- used to design a second-order Kalman filter whose

innovations were used to detect altimeter failures.
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Appendix

Consider the problem of choosing an Nxp matrix P to minimize

Q
J = I pTZ II2 (A.1)

q=l

subject to the constraint that pTp = I. Note first that

J = [ PTz 112 = tr(pTZZTP) (A.2)

where Z is defined in (16). As discussed in Section 3, we assume

without loss of generality that N<Qn. Let the singular value

decomposition of Z be as given in (18), (19).

We now show that the minimum value of J is

p

J = Ei (A.3)

i=l

and the optimum choice of P is

P = [ul:u2: *.. :up] (A.4)

where the ui are the first p left singular vectors of Z. To do this, we

use the following elementary result, which is a direct consequence of

the Courant-Fischer minimax principle [3, 14]: Suppose that

[All A1 2
A = (A.5)

A2 1 A2 2

is nxn, symmetric, and positive semidefinite. Suppose also that All is

mxm, and let Xi(A), Ai(All) denote the i-th smallest eigenvalue of A,

All respectively. Then

Ai(A) < Ai(All) , i = l...m . (A.6)

Consider then any choice-of P satisfying the constraint pTp = I,

and augment this matrix with N-p additional columns so that the square

matrix
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F = [P:D] (A.7)

is orthogonal. Then

rPTZZTp *1

FTZZTF = . (A.8)

Applying (A.6) to (A.8) and using both (A.2) and the fact that F is

orthogonal, we see that

P P P
t ao = AXi(zzT ) = Ai(FTZZTF) < tr(PTZZTP) = ItpTzl 2 (A.9)

i=l i=l i=l

From (18) we see that

ZZT = UIyTUT (A.10)

with

ET = diagonal [of, ... ,o2] . (A.ll)

From this we see that the inequality in (A.9) becomes an equality if p

is chosen as in (A.4), thereby proving our assertion.

We note that from this analysis we can directly deduce that the

same choice of p minimizes a variety of other criteria. For example, an

interesting one is

det(PTZZTP) (A.12)

which has the interpretation of minimizing the volume of the projection

of the columns of Z onto the subspace P. The proof that the same P

minimizes (A.12) is also a straightforward consequence of (A.6) and

(A.8). Specifically

P P P
det(pTzzTp) = -T Ai(PTZZTP) > iT Xi(zzT) = T ai (A.13)

i=li i=l i=l

with equality resulting once again if P is taken as in (A.4).

Finally, note that (as can be seen in (A.10)) we are actually using
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the eigenvalue-eigenvector decomposition of

Q
zzT = Z qZ

q q
q=l

in order to find the optimal choice of P. This suggests a direct

generalization of the criterion (A.1) to allow continuous parameter

variations. Specifically, assume that q c K, a compact subset of a

finite-dimensional Euclidean space, and consider the following

criterion:

j = fpTZ 112dq = tr{pT(J ZqzTdq)P} (A.14)

K K

(As before, this can be interpreted as E[ lr(k) 112], where we have

absorbed the square root of the probability density of q into the

definition of Zq).

Consider the eigenvalue-eigenvector representation

f ZqZ~dq = UATU (A.15)

K

where 0 < A1 <A 2 < ... < AN. Then the first p columns of U define the

optimal choice of P. Note also that (assuming that A1 > 0) if we define

Vq = A-1/2UTz (A.16)

then

Zq= Ul /2Vq (A.17)

where UTU = I and

VqVTdq I . (A.18)

K

Hence (A.17) is the singular value decomposition of the map Zq .
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